186 lines
		
	
	
	
		
			5.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
		
		
			
		
	
	
			186 lines
		
	
	
	
		
			5.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
|   | <!doctype html> | ||
|  | <html lang="en"> | ||
|  | 
 | ||
|  | 	<head> | ||
|  | 		<meta charset="utf-8"> | ||
|  | 
 | ||
|  | 		<title>reveal.js - Math Plugin</title> | ||
|  | 
 | ||
|  | 		<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no"> | ||
|  | 
 | ||
|  | 		<link rel="stylesheet" href="../../css/reveal.css"> | ||
|  | 		<link rel="stylesheet" href="../../css/theme/night.css" id="theme"> | ||
|  | 	</head> | ||
|  | 
 | ||
|  | 	<body> | ||
|  | 
 | ||
|  | 		<div class="reveal"> | ||
|  | 
 | ||
|  | 			<div class="slides"> | ||
|  | 
 | ||
|  | 				<section> | ||
|  | 					<h2>reveal.js Math Plugin</h2> | ||
|  | 					<p>A thin wrapper for MathJax</p> | ||
|  | 				</section> | ||
|  | 
 | ||
|  | 				<section> | ||
|  | 					<h3>The Lorenz Equations</h3> | ||
|  | 
 | ||
|  | 					\[\begin{aligned} | ||
|  | 					\dot{x} & = \sigma(y-x) \\ | ||
|  | 					\dot{y} & = \rho x - y - xz \\ | ||
|  | 					\dot{z} & = -\beta z + xy | ||
|  | 					\end{aligned} \] | ||
|  | 				</section> | ||
|  | 
 | ||
|  | 				<section> | ||
|  | 					<h3>The Cauchy-Schwarz Inequality</h3> | ||
|  | 
 | ||
|  | 					<script type="math/tex; mode=display"> | ||
|  | 						\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) | ||
|  | 					</script> | ||
|  | 				</section> | ||
|  | 
 | ||
|  | 				<section> | ||
|  | 					<h3>A Cross Product Formula</h3> | ||
|  | 
 | ||
|  | 					\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix} | ||
|  | 					\mathbf{i} & \mathbf{j} & \mathbf{k} \\ | ||
|  | 					\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\ | ||
|  | 					\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0 | ||
|  | 					\end{vmatrix}  \] | ||
|  | 				</section> | ||
|  | 
 | ||
|  | 				<section> | ||
|  | 					<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3> | ||
|  | 
 | ||
|  | 					\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \] | ||
|  | 				</section> | ||
|  | 
 | ||
|  | 				<section> | ||
|  | 					<h3>An Identity of Ramanujan</h3> | ||
|  | 
 | ||
|  | 					\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = | ||
|  | 					1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} | ||
|  | 					{1+\frac{e^{-8\pi}} {1+\ldots} } } } \] | ||
|  | 				</section> | ||
|  | 
 | ||
|  | 				<section> | ||
|  | 					<h3>A Rogers-Ramanujan Identity</h3> | ||
|  | 
 | ||
|  | 					\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = | ||
|  | 					\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] | ||
|  | 				</section> | ||
|  | 
 | ||
|  | 				<section> | ||
|  | 					<h3>Maxwell’s Equations</h3> | ||
|  | 
 | ||
|  | 					\[  \begin{aligned} | ||
|  | 					\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ | ||
|  | 					\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ | ||
|  | 					\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} | ||
|  | 					\] | ||
|  | 				</section> | ||
|  | 
 | ||
|  | 				<section> | ||
|  | 					<section> | ||
|  | 						<h3>The Lorenz Equations</h3> | ||
|  | 
 | ||
|  | 						<div class="fragment"> | ||
|  | 							\[\begin{aligned} | ||
|  | 							\dot{x} & = \sigma(y-x) \\ | ||
|  | 							\dot{y} & = \rho x - y - xz \\ | ||
|  | 							\dot{z} & = -\beta z + xy | ||
|  | 							\end{aligned} \] | ||
|  | 						</div> | ||
|  | 					</section> | ||
|  | 
 | ||
|  | 					<section> | ||
|  | 						<h3>The Cauchy-Schwarz Inequality</h3> | ||
|  | 
 | ||
|  | 						<div class="fragment"> | ||
|  | 							\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \] | ||
|  | 						</div> | ||
|  | 					</section> | ||
|  | 
 | ||
|  | 					<section> | ||
|  | 						<h3>A Cross Product Formula</h3> | ||
|  | 
 | ||
|  | 						<div class="fragment"> | ||
|  | 							\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix} | ||
|  | 							\mathbf{i} & \mathbf{j} & \mathbf{k} \\ | ||
|  | 							\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\ | ||
|  | 							\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0 | ||
|  | 							\end{vmatrix}  \] | ||
|  | 						</div> | ||
|  | 					</section> | ||
|  | 
 | ||
|  | 					<section> | ||
|  | 						<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3> | ||
|  | 
 | ||
|  | 						<div class="fragment"> | ||
|  | 							\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \] | ||
|  | 						</div> | ||
|  | 					</section> | ||
|  | 
 | ||
|  | 					<section> | ||
|  | 						<h3>An Identity of Ramanujan</h3> | ||
|  | 
 | ||
|  | 						<div class="fragment"> | ||
|  | 							\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = | ||
|  | 							1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} | ||
|  | 							{1+\frac{e^{-8\pi}} {1+\ldots} } } } \] | ||
|  | 						</div> | ||
|  | 					</section> | ||
|  | 
 | ||
|  | 					<section> | ||
|  | 						<h3>A Rogers-Ramanujan Identity</h3> | ||
|  | 
 | ||
|  | 						<div class="fragment"> | ||
|  | 							\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = | ||
|  | 							\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] | ||
|  | 						</div> | ||
|  | 					</section> | ||
|  | 
 | ||
|  | 					<section> | ||
|  | 						<h3>Maxwell’s Equations</h3> | ||
|  | 
 | ||
|  | 						<div class="fragment"> | ||
|  | 							\[  \begin{aligned} | ||
|  | 							\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ | ||
|  | 							\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ | ||
|  | 							\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} | ||
|  | 							\] | ||
|  | 						</div> | ||
|  | 					</section> | ||
|  | 				</section> | ||
|  | 
 | ||
|  | 			</div> | ||
|  | 
 | ||
|  | 		</div> | ||
|  | 
 | ||
|  | 		<script src="../../lib/js/head.min.js"></script> | ||
|  | 		<script src="../../js/reveal.js"></script> | ||
|  | 
 | ||
|  | 		<script> | ||
|  | 
 | ||
|  | 			Reveal.initialize({ | ||
|  | 				history: true, | ||
|  | 				transition: 'linear', | ||
|  | 
 | ||
|  | 				math: { | ||
|  | 					// mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js', | ||
|  | 					config: 'TeX-AMS_HTML-full' | ||
|  | 				}, | ||
|  | 
 | ||
|  | 				dependencies: [ | ||
|  | 					{ src: '../../lib/js/classList.js' }, | ||
|  | 					{ src: '../../plugin/math/math.js', async: true } | ||
|  | 				] | ||
|  | 			}); | ||
|  | 
 | ||
|  | 		</script> | ||
|  | 
 | ||
|  | 	</body> | ||
|  | </html> |