vmkdrivers/BLD/build/HEADERS/CUR-9-vmkdrivers-asm-x64/vmkernel64/release/asm/bitops.h

730 lines
19 KiB
C
Raw Normal View History

2015-10-23 19:21:55 +00:00
/*
* Portions Copyright 2008, 2009 VMware, Inc.
*/
#ifndef _X86_64_BITOPS_H
#define _X86_64_BITOPS_H
#if defined(__VMKLNX__)
#include "vmkapi.h"
#endif /* defined(__VMKLNX__) */
/*
* Copyright 1992, Linus Torvalds.
*/
#include <asm/alternative.h>
#define ADDR (*(volatile long *) addr)
/**
* set_bit - Atomically set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* This function is atomic and may not be reordered. See __set_bit()
* if you do not require the atomic guarantees.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*
* RETURN VALUE:
* NONE
*
*/
/* _VMKLNX_CODECHECK_: set_bit */
static __inline__ void set_bit(int nr, volatile void * addr)
{
__asm__ __volatile__( LOCK_PREFIX
"btsl %1,%0"
:"+m" (ADDR)
:"dIr" (nr) : "memory");
}
/**
* __set_bit - Set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike set_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static __inline__ void __set_bit(int nr, volatile void * addr)
{
__asm__ volatile(
"btsl %1,%0"
:"+m" (ADDR)
:"dIr" (nr) : "memory");
}
/**
* clear_bit - Clears a bit in memory
* @nr: Bit to clear
* @addr: Address to start counting from
*
* Clears a bit in memory.
* clear_bit() is atomic and may not be reordered. However, it does
* not contain a memory barrier, so if it is used for locking purposes,
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
* in order to ensure changes are visible on other processors.
*
* RETURN VALUE:
* None
*
*/
/* _VMKLNX_CODECHECK_: clear_bit */
static __inline__ void clear_bit(int nr, volatile void * addr)
{
__asm__ __volatile__( LOCK_PREFIX
"btrl %1,%0"
:"+m" (ADDR)
:"dIr" (nr));
}
static __inline__ void __clear_bit(int nr, volatile void * addr)
{
__asm__ __volatile__(
"btrl %1,%0"
:"+m" (ADDR)
:"dIr" (nr));
}
#define smp_mb__before_clear_bit() barrier()
#define smp_mb__after_clear_bit() barrier()
/**
* __change_bit - Toggle a bit in memory
* @nr: the bit to change
* @addr: the address to start counting from
*
* Unlike change_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static __inline__ void __change_bit(int nr, volatile void * addr)
{
__asm__ __volatile__(
"btcl %1,%0"
:"+m" (ADDR)
:"dIr" (nr));
}
/**
* change_bit - Toggle a bit in memory
* @nr: Bit to change
* @addr: Address to start counting from
*
* change_bit() is atomic and may not be reordered.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static __inline__ void change_bit(int nr, volatile void * addr)
{
__asm__ __volatile__( LOCK_PREFIX
"btcl %1,%0"
:"+m" (ADDR)
:"dIr" (nr));
}
/**
* test_and_set_bit - Set a bit and return its old state
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
* It tests if the bit at position nr in *addr is 0 or not and sets it to 1.
* Note that the return value need not be 1 (just non-zero) if the bit was 1.
*
* RETURN VALUE:
* 0 if original bit was 0 and NON-ZERO otherwise
*/
/* _VMKLNX_CODECHECK_: test_and_set_bit */
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
{
int oldbit;
__asm__ __volatile__( LOCK_PREFIX
"btsl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"+m" (ADDR)
:"dIr" (nr) : "memory");
return oldbit;
}
/**
* __test_and_set_bit - Set a bit and return its old state
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
* It tests if the bit at position nr in *addr is 0 or not and sets it to 1.
* Note that the return value need not be 1 (just non-zero) if the bit was 1.
*
* RETURN VALUE:
* 0 if original bit was 0 and NON-ZERO otherwise
*
* SEE ALSO:
* test_and_set_bit
*/
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
int oldbit;
__asm__(
"btsl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"+m" (ADDR)
:"dIr" (nr));
return oldbit;
}
/**
* test_and_clear_bit - Clear a bit and return its old state
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
* It tests if the bit at position nr in *addr is 0 or not and sets it to 0.
* Note that the return value need not be 1 (just non-zero) if the bit was 1.
*
* RETURN VALUE:
* 0 if original bit was 0 and NON-ZERO otherwise
*/
/* _VMKLNX_CODECHECK_: test_and_clear_bit */
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
{
int oldbit;
__asm__ __volatile__( LOCK_PREFIX
"btrl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"+m" (ADDR)
:"dIr" (nr) : "memory");
return oldbit;
}
/**
* __test_and_clear_bit - Clear a bit and return its old state
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
* It tests if the bit at position nr in *addr is 0 or not and sets it to 0.
* Note that the return value need not be 1 (just non-zero) if the bit was 1.
*
* RETURN VALUE:
* 0 if original bit was 0 and NON-ZERO otherwise
*
* SEE ALSO:
* test_and_clear_bit
*/
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
int oldbit;
__asm__(
"btrl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"+m" (ADDR)
:"dIr" (nr));
return oldbit;
}
/**
* __test_and_change_bit - Toggle a bit and return its old state
* @nr: Bit to toggle
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* It also implies a memory barrier.
* It tests if the bit at position nr in *addr is 0 or not and toggles it.
* Note that the return value need not be 1 (just non-zero) if the bit was 1.
*
* RETURN VALUE:
* 0 if original bit was 0 and NON-ZERO otherwise
*
* SEE ALSO:
* test_and_change_bit
*/
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
int oldbit;
__asm__ __volatile__(
"btcl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"+m" (ADDR)
:"dIr" (nr) : "memory");
return oldbit;
}
/**
* test_and_change_bit - Toggle a bit and return its old state
* @nr: Bit to toggle
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
* It tests if the bit at position nr in *addr is 0 or not and toggles it.
* Note that the return value need not be 1 (just non-zero) if the bit was 1.
*
* RETURN VALUE:
* 0 if original bit was 0 and NON-ZERO otherwise
*/
/* _VMKLNX_CODECHECK_: test_and_change_bit */
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
{
int oldbit;
__asm__ __volatile__( LOCK_PREFIX
"btcl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"+m" (ADDR)
:"dIr" (nr) : "memory");
return oldbit;
}
/**
* constant_test_bit - determine whether a bit is set
* @nr: bit number to test
* @addr: addr to test
*
* Determines the state of the specified bit.
* This is used when @nr is known to be constant at compile-time.
* Use test_bit() instead of using this directly.
*
* RETURN VALUE:
* 0 if the bit was 0 and NON-ZERO otherwise
*/
/* _VMKLNX_CODECHECK_: constant_test_bit */
static __inline__ int constant_test_bit(int nr, const volatile void * addr)
{
return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
}
/**
* variable_test_bit - determine whether a bit is set
* @nr: bit number to test
* @addr: addr to test
*
* Determines the state of the specified bit.
* This is used when @nr is a variable.
* Use test_bit() instead of using this directly.
*
* RETURN VALUE:
* 0 if the bit was 0 and NON-ZERO otherwise
*/
/* _VMKLNX_CODECHECK_: variable_test_bit */
static __inline__ int variable_test_bit(int nr, volatile const void * addr)
{
int oldbit;
__asm__ __volatile__(
"btl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit)
:"m" (ADDR),"dIr" (nr));
return oldbit;
}
/**
* test_bit - Determine if bit at given position is set
* @nr: number of bit to be tested
* @addr: pointer to byte to test
*
* It tests if the bit at position nr in *addr is 0 or not.
* If the bit number is a constant an optimized bit extract is done.
* Note that the return value need not be 1 (just non-zero) if the bit was 1.
*
* SYNOPSIS:
* #define test_bit(nr,addr)
*
* RETURN VALUE:
* 0 if the bit was 0 and NON-ZERO otherwise
*/
/* _VMKLNX_CODECHECK_: test_bit */
#define test_bit(nr,addr) \
(__builtin_constant_p(nr) ? \
constant_test_bit((nr),(addr)) : \
variable_test_bit((nr),(addr)))
#undef ADDR
#if defined(__VMKLNX__)
/**
* find_first_zero_bit - find the first zero bit in a memory region
* @addr: The address to start the search at
* @size: The maximum bitnumber to search
*
* Finds the first zero bit in a specified memory region
*
* RETURN VALUE:
* Returns the bit-number of the first zero bit, not the number of the byte
* containing a bit.
* If result is equal to or greater than size means no zero bit is found
*/
/* _VMKLNX_CODECHECK_: find_first_zero_bit */
static __inline__ long
find_first_zero_bit(const unsigned long * addr, unsigned long size)
{
long d0, d1, d2;
long res;
/*
* We must test the size in words, not in bits, because
* otherwise incoming sizes in the range -63..-1 will not run
* any scasq instructions, and then the flags used by the je
* instruction will have whatever random value was in place
* before. Nobody should call us like that, but
* find_next_zero_bit() does when offset and size are at the
* same word and it fails to find a zero itself.
*/
size += 63;
size >>= 6;
if (!size)
return 0;
vmk_CPUEnsureClearDF();
asm volatile(
" repe; scasq\n"
" je 1f\n"
" xorq -8(%%rdi),%%rax\n"
" subq $8,%%rdi\n"
" bsfq %%rax,%%rdx\n"
"1: subq %[addr],%%rdi\n"
" shlq $3,%%rdi\n"
" addq %%rdi,%%rdx"
:"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
:"0" (0ULL), "1" (size), "2" (addr), "3" (-1ULL),
[addr] "S" (addr) : "memory");
/*
* Any register would do for [addr] above, but GCC tends to
* prefer rbx over rsi, even though rsi is readily available
* and doesn't have to be saved.
*/
return res;
}
/**
* find_next_zero_bit - find the first zero bit in a memory region
* @addr: The address to base the search on
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*
* Finds the first zero bit in a specified memory region
*
* RETURN VALUE:
* Returns the bit-number of the first zero bit in a memory region after the
* specified offset
* If result is equal to or greater than size means no zero bit is found
*/
/* _VMKLNX_CODECHECK_: find_next_zero_bit */
static __inline__ long
find_next_zero_bit (const unsigned long * addr, long size, long offset)
{
const unsigned long * p = addr + (offset >> 6);
unsigned long set = 0;
unsigned long res, bit = offset&63;
if (bit) {
/*
* Look for zero in first word
*/
asm("bsfq %1,%0\n\t"
"cmoveq %2,%0"
: "=r" (set)
: "r" (~(*p >> bit)), "r"(64L));
if (set < (64 - bit))
return set + offset;
set = 64 - bit;
p++;
}
/*
* No zero yet, search remaining full words for a zero
*/
res = find_first_zero_bit (p, size - 64 * (p - addr));
return (offset + set + res);
}
/**
* find_first_bit - find the first set bit in a memory region
* @addr: The address to start the search at
* @size: The maximum size to search
*
* Finds the first set bit in a specified memory region
*
* RETURN VALUE:
* Returns the bit-number of the first set bit, not the number of the byte
* containing a bit.
*
*/
/* _VMKLNX_CODECHECK_: find_first_bit */
static __inline__ long find_first_bit(const unsigned long * addr, unsigned long size)
{
long d0, d1;
long res;
/*
* We must test the size in words, not in bits, because
* otherwise incoming sizes in the range -63..-1 will not run
* any scasq instructions, and then the flags used by the jz
* instruction will have whatever random value was in place
* before. Nobody should call us like that, but
* find_next_bit() does when offset and size are at the same
* word and it fails to find a one itself.
*/
size += 63;
size >>= 6;
if (!size)
return 0;
vmk_CPUEnsureClearDF();
asm volatile(
" repe; scasq\n"
" jz 1f\n"
" subq $8,%%rdi\n"
" bsfq (%%rdi),%%rax\n"
"1: subq %[addr],%%rdi\n"
" shlq $3,%%rdi\n"
" addq %%rdi,%%rax"
:"=a" (res), "=&c" (d0), "=&D" (d1)
:"0" (0ULL), "1" (size), "2" (addr),
[addr] "r" (addr) : "memory");
return res;
}
/**
* find_next_bit - find the first set bit in a memory region
* @addr: The address to base the search on
* @size: The maximum size to search
* @offset: The bitnumber to start searching at
*
* Finds the first set bit in a specified memory region
*
* RETURN VALUE:
* Position of the first set bit in the specified memory, starting from offset.
* If none is found, the full word, starting from addr, is searched.
*/
/* _VMKLNX_CODECHECK_: find_next_bit */
static __inline__ long find_next_bit(const unsigned long * addr, long size, long offset)
{
const unsigned long * p = addr + (offset >> 6);
unsigned long set = 0, bit = offset & 63, res;
if (bit) {
/*
* Look for nonzero in the first 64 bits:
*/
asm("bsfq %1,%0\n\t"
"cmoveq %2,%0\n\t"
: "=r" (set)
: "r" (*p >> bit), "r" (64L));
if (set < (64 - bit))
return set + offset;
set = 64 - bit;
p++;
}
/*
* No set bit yet, search remaining full words for a bit
*/
res = find_first_bit (p, size - 64 * (p - addr));
return (offset + set + res);
}
#else /* !defined(__VMKLNX__) */
extern long find_first_zero_bit(const unsigned long * addr, unsigned long size);
extern long find_next_zero_bit (const unsigned long * addr, long size, long offset);
extern long find_first_bit(const unsigned long * addr, unsigned long size);
extern long find_next_bit(const unsigned long * addr, long size, long offset);
#endif /* defined(__VMKLNX__) */
/**
* __scanbit - searches unsigned long value for the least significant set bit
* @val: The unsigned long value to scan for the set bit
* @max: The value to return if no set bit found
*
* Finds the least significant set bit in specified unsigned long value
*
* RETURN VALUE:
* Index of first bit set in val or max when no bit is set
*/
/* _VMKLNX_CODECHECK_: __scanbit */
static inline unsigned long __scanbit(unsigned long val, unsigned long max)
{
asm("bsfq %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max));
return val;
}
#define find_first_bit(addr,size) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
(__scanbit(*(unsigned long *)addr,(size))) : \
find_first_bit(addr,size)))
#define find_next_bit(addr,size,off) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
((off) + (__scanbit((*(unsigned long *)addr) >> (off),(size)-(off)))) : \
find_next_bit(addr,size,off)))
#define find_first_zero_bit(addr,size) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
(__scanbit(~*(unsigned long *)addr,(size))) : \
find_first_zero_bit(addr,size)))
#define find_next_zero_bit(addr,size,off) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
((off)+(__scanbit(~(((*(unsigned long *)addr)) >> (off)),(size)-(off)))) : \
find_next_zero_bit(addr,size,off)))
/*
* Find string of zero bits in a bitmap. -1 when not found.
*/
extern unsigned long
find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len);
static inline void set_bit_string(unsigned long *bitmap, unsigned long i,
int len)
{
unsigned long end = i + len;
while (i < end) {
__set_bit(i, bitmap);
i++;
}
}
static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i,
int len)
{
unsigned long end = i + len;
while (i < end) {
__clear_bit(i, bitmap);
i++;
}
}
/**
* ffz - find first zero in word.
* @word: The word to search
*
* Undefined if no zero exists, so code should check against ~0UL first.
*
* RETURN VALUE:
* Position of the first zero in the word
*/
/* _VMKLNX_CODECHECK_: ffz */
static __inline__ unsigned long ffz(unsigned long word)
{
__asm__("bsfq %1,%0"
:"=r" (word)
:"r" (~word));
return word;
}
/**
* __ffs - find first set bit in word
* @word: The word to search
*
* Undefined if no bit is set, so code should check against 0 first.
*
* RETURN VALUE:
* Position of the first set bit in the word
*/
/* _VMKLNX_CODECHECK_: __ffs */
static __inline__ unsigned long __ffs(unsigned long word)
{
__asm__("bsfq %1,%0"
:"=r" (word)
:"rm" (word));
return word;
}
/*
* __fls: find last bit set.
* @word: The word to search
*
* Undefined if no zero exists, so code should check against ~0UL first.
*/
static __inline__ unsigned long __fls(unsigned long word)
{
__asm__("bsrq %1,%0"
:"=r" (word)
:"rm" (word));
return word;
}
#ifdef __KERNEL__
#include <asm-generic/bitops/sched.h>
/**
* ffs - find first bit set
* @x: the word to search
*
* Finds the first bit set in the referenced word
*
* RETURN VALUE:
* Position of the first set bit
*/
/* _VMKLNX_CODECHECK_: ffs */
static __inline__ int ffs(int x)
{
int r;
__asm__("bsfl %1,%0\n\t"
"cmovzl %2,%0"
: "=r" (r) : "rm" (x), "r" (-1));
return r+1;
}
/**
* fls64 - find last bit set in 64 bit word
* @x: the word to search
*
* This is defined the same way as fls.
*/
static __inline__ int fls64(__u64 x)
{
if (x == 0)
return 0;
return __fls(x) + 1;
}
/**
* fls - find last bit set
* @x: the word to search
*
* Finds last bit set in the specified word
*
* RETURN VALUE:
* The last set bit in specified word
*/
/* _VMKLNX_CODECHECK_: fls */
static __inline__ int fls(int x)
{
int r;
__asm__("bsrl %1,%0\n\t"
"cmovzl %2,%0"
: "=&r" (r) : "rm" (x), "rm" (-1));
return r+1;
}
#include <asm-generic/bitops/hweight.h>
#endif /* __KERNEL__ */
#ifdef __KERNEL__
#include <asm-generic/bitops/ext2-non-atomic.h>
#define ext2_set_bit_atomic(lock,nr,addr) \
test_and_set_bit((nr),(unsigned long*)addr)
#define ext2_clear_bit_atomic(lock,nr,addr) \
test_and_clear_bit((nr),(unsigned long*)addr)
#include <asm-generic/bitops/minix.h>
#endif /* __KERNEL__ */
#endif /* _X86_64_BITOPS_H */