import contextlib import functools from django.contrib.auth.models import User class BatchController(object): ''' Batches are sets of operations where certain queries for users may be repeated, but are also unlikely change within the boundaries of the batch. Batches are keyed per-user. You can mark the edge of the batch with the ``batch`` context manager. If you nest calls to ``batch``, only the outermost call will have the effect of ending the batch. Batches store results for functions wrapped with ``memoise``. These results for the user are flushed at the end of the batch. If a return for a memoised function has a callable attribute called ``end_batch``, that attribute will be called at the end of the batch. ''' _user_caches = {} _NESTING_KEY = "nesting_count" @classmethod @contextlib.contextmanager def batch(cls, user): ''' Marks the entry point for a batch for the given user. ''' cls._enter_batch_context(user) try: yield finally: # Make sure we clean up in case of errors. cls._exit_batch_context(user) @classmethod def _enter_batch_context(cls, user): if user not in cls._user_caches: cls._user_caches[user] = cls._new_cache() cache = cls._user_caches[user] cache[cls._NESTING_KEY] += 1 @classmethod def _exit_batch_context(cls, user): cache = cls._user_caches[user] cache[cls._NESTING_KEY] -= 1 if cache[cls._NESTING_KEY] == 0: for key in cache: item = cache[key] if hasattr(item, 'end_batch') and callable(item.end_batch): item.end_batch() del cls._user_caches[user] @classmethod def memoise(cls, func): ''' Decorator that stores the result of the stored function in the user's results cache until the batch completes. Keyword arguments are not yet supported. Arguments: func (callable(*a)): The function whose results we want to store. The positional arguments, ``a``, are used as cache keys. Returns: callable(*a): The memosing version of ``func``. ''' @functools.wraps(func) def f(*a): for arg in a: if isinstance(arg, User): user = arg break else: raise ValueError("One position argument must be a User") func_key = (func, tuple(a)) cache = cls.get_cache(user) if func_key not in cache: cache[func_key] = func(*a) return cache[func_key] return f @classmethod def get_cache(cls, user): if user not in cls._user_caches: # Return blank cache here, we'll just discard :) return cls._new_cache() return cls._user_caches[user] @classmethod def _new_cache(cls): ''' Returns a new cache dictionary. ''' cache = {} cache[cls._NESTING_KEY] = 0 return cache